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Abstract—An innovations in airline industry has significant
impact on the behavior of its participants: airline companies,
airports and passengers. In this paper the innovation that is
studied is an introduction of double-deck plane – A-380, which
is currently the largest aircraft. Due to its size, it is able to carry
at once approximately twice as many passenger as the other
medium-sized aircraft, thus, allowing to reduce the frequency,
and, as a consequence, induce lower environmental impact.
However, in reality, flight frequency depends on many other
factors such as airport fees, demand and strategic decision of
companies to maximize their profits under competition. Using
the monthly panel observations of airline companies over 10
years on 121 routes, we test if the utilization of A-380 leads
to the decrease in airline company’s flight frequency. Moreover,
we analyze the response of the use of A-380 on the competitors’
frequency. We find that increase in usage of A-380 leads to the
decrease of company’s own frequency, whereas the competitors
have incentive to increase its frequency by differentiating their
flights by departure time in order to attract passengers who value
the availability of flight at a particular hour.

Index Terms—A-380, frequency of flight, airline innovation,
airline competition

I. INTRODUCTION

Air transport market is characterized by numerous interac-
tions between airlines, passengers, service providers, official
regulators as well as countries. Given this complex system,
growing traffic flow and the global appeal for sustainable de-
velopment, the airline market is challenged to adapt strategies
in order to achieve operational efficiency and preserve high
profits under the vigorous competition. In return, aircraft man-
ufacturers have to address these issues by providing innovative
solutions for the future aircraft generation. Their solutions will
impact airlines companies as well as the other participants
of the air transport system. One of such examples is the
launch of the biggest passenger double-deck aircraft A-380.
We aim to contribute and deepen theoretical understanding
of air stakeholders’ behavior given the introduction of this
innovation, which allows to accommodate growing air traffic
with lower impact on environment. The main objective of this
paper is to identify if after the introduction of A-380 there
is a decrease in flight frequency for airline companies on the
route due to higher capacity of airplane, allowing for better
operational efficiency and lower level of carbon footprint. The
flight frequency is defined in this study as the total number

of flights between departure and destination points supplied
by one airline company in a month. To answer this question
we will summarize a review of existing studies, describe
the available data and define initial econometric model that
impacts the frequency of flights.

II. LITERATURE REVIEW

In 2013 the air transport activities contributed 12% to trans-
port and 2% to total world CO2 emission [18]. With rising
global environmental concern and volatile oil prices, aircraft
manufacturers aim to bring innovative technologies and adjust
operation efficiency of new generation of aircraft. A-380 is
the biggest passenger aircraft that due to economies of size
provides efficiency in terms of fuel burn, taking into account
the classic seat configuration provided by the manufacturer [8].
King (2007) in his analysis of A-380 highlights that the aircraft
suits long-haul and high-density markets, allowing to absorb
high-frequency operations. The author notes that if flying
intelligently the aircraft can sustain markets in the periods
of high fuel price by reducing the fuel cost per passenger
kilometer. The reduction of frequency is directly linked to
the reduction of fuel burn and correspondingly lower level
of carbon emission.

The selection of scientific literature aims to answer the
earlier research question:
• If the air carriers introduce A-380 in their fleet does it

lead to the reduction of frequency of flights on the routes?
We analyzed the existing studies that address the behavior

of aviation sector under environmental constraints and inno-
vation. The studies introduced one of the following ideas:

1) The influence of aircraft type and size on fuel consump-
tion and CO2 emission

2) Current fuel and operational efficiency of airline com-
panies

While studying the fuel emission some authors take a
company-specific approach or industry as a whole and others
consider the effect on passenger demand. Wei, Cui, and
Gil [18] identify that pressure from competitors and strict
governmental regulations are the driving forces for innovation
in airline industry. They study how environmental innovations
affect the companies financial and operational performance.



The other scholars (Scotti and Volta [16], Park and O’Kelly
[15], Morrell [11], Miyoshi and Mason [9]) focused on the
relationship between aircraft size and environmental produc-
tivity, arriving to the conclusion that larger aircraft provides
improvement in efficiency and that there is an overall trend
in change to larger aircraft types for short and medium
haul flights. These articles provided a ground for a base
assumption on the efficiency of larger aircraft. Pagovi and
Psaraki-Kalouptsidi [13] come up with creative instruments
to tackle endogeneity between market share (measure of
concentration of the market) and frequency. These are market
related instruments (number of airlines on the market, number
of offered connections), route-level instrument (if the airport
is hub for the operating airline) and rival related instruments
(percentage of non-stop rival routes[13]). In our specification,
we will test if number of airlines characterizes the market con-
centration, since other indexes such as Herfindahl-Hirschman
Index (HHI), calculated by adding the squared market shares
[7], does not vary sufficiently over time.

Babic, Kuljanin, and Kalic [1] notes that airline companies
by increasing market share have higher probability of profit
maximization and there are two strategies that airlines can
follow, which are either to increase frequency or to increase
seating capacity with larger airplanes. They also note that
efficiency is a likewise important factor that impact market
share.

Pai [14], Wang et al. [17] and Bilotkach [2] examine
the frequency strategies and aircraft sizes. Wang et al. [17]
found that in emerging markets airlines adjust the growing
traffic by increasing frequency. They also concluded that more
concentrated1 market structures resulted from merges lead to
the reduction of frequencies. Even though collective research
approached the topic from different angles, the collected
findings demonstrate that airline companies have to adopt
efficient strategies to sustain their competitiveness under the
conditions of volatile and dynamic market.

III. DATA

The database is the OAG schedule analyzer - database of
Official Airline Guide, which is a UK company that provides
airline data services [12]. It is a powerful tool, which contains
the past, current and future information on supplied scheduled
flights. Being first published in 1929, today OAG holds
information for 1000 airlines and 4000 airports. The advantage
of Schedule analyzer is that it allows to view activities of
competitors on different routes and obtain information on the
relative share of supply. It contains different variables such as
airports, carriers, flight frequencies, aircraft types, alliance etc.
This is one of the most comprehensive and widely used data
on traffic flow.

The other database is ENAC database on Air Transport.
The ENAC database contains information for 500 airline
companies and consist of three separate databases on Airlines

1More concentrated refers to the concentration in terms of HHI (HHI close
to 1), when there are less number of carriers

companies, Airports and Traffic flows. It contains data on
different indicators from various sources (IATA [5], ICAO [6],
Airline Monitor [10], etc). ENAC database was used to extract
the actual recorded traffic flow on the routes, which represent
the demand proxy in the model. Data structure is panel data.
Besides having cross sectional and time series dimension,
our panel data has more complex hierarchical form [4]: the
dependent variables y measures the frequency of flights for
the airline i on Origin-Destination route j at time t. The panel
structure was chosen due to the following advantages[4]:

– It allows to conduct more precise inference due to higher
variability: presence of greater number of observations
allows for more degrees of freedom [4].

Moreover, by capturing inter- and intra- individual charac-
teristics with panel data, it is possible to model more complex
behavior. In our case it is an important aspect, since the change
of aircraft is not an immediate process, it takes several months
or years for companies to adopt new fleet. Thus, the timing
allows to capture the response dynamics to see the impact of
innovation.

– Panel data allows to control the omitted variables [4]
By capturing effect between individuals and their behavior
over time we are able to legitimately ignore the impact of
omitted variables that are constant over time. These could
be company or route-specific characteristics that are not ob-
servable in our case. Time-series dimension of panel data
captures the dynamics of development, since market entrance
merge and exit are common practices in airline industry. Thus,
we are able to control highly dynamic and rapidly changing
competition structure of the market.

However, along with all the benefits of panel structure,
there are potential issues that could lead to biased estimation
of coefficients of regression models. Often time-series data
exhibits seasonal behavior [4], which is the case for airline
market. Depending on the route, there are particular periods
when passenger traffic increases substantially due to vacation,
business seasons etc. The graph 1 shows that seasonality is a
common feature for airline market.

Fig. 1. Seasonality on some routes
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As it could be seen from the figure 1 there is a clear
seasonal trend, however, the pattern is not the same2. For
CDG-LAX (Charles de Gaulle – Los Angeles Airports), CDG-
YUL (Charles de Gaulle – Montréal Airports) routes we see

2Blue line corresponds to the airport pair of Paris-Montréal, green - Paris-
Los Angeles, red - Paris-Cancun.



that seats surge dramatically for summer periods with peaks
in July-August, whereas for CDG-CUN (Charles de Gaulle
– Cancun Airports) the highest points fall in a December-
January period. This is not a surprising fact, people travel
from Paris to Los Angeles and Montréal in summer period,
whereas destination Paris-Mexico is the more favorable for
tourism during winter. In our sample routes have the same
seasonality pattern. Seasonality will be controlled in this study
by introducing monthly dummy variables[4].

Overall, there is an annual increase in passenger traffic, as
shown in figure 2:

Fig. 2. Growth of passenger flow
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Despite the shock in 2007 to 2009 on figure 2 due to global
financial crisis, there is an upward trend, which is consistent
with predictions of scholars that in future passenger flow will
continue to increase. Therefore, in our model we will control
for special events and shocks using dummy variables for years
2008, 2009 and 2010.

In total there are 151 airport-to-airport routes on which A-
380 aircraft operates. Due to its size, A-380 is designed for
long-haul routes with high demand. A long-haul route [15] is
considered to be a non-stop fly with distance greater than 2000
km. Therefore, after conducting the qualitative analysis of the
routes, we decided to include only routes that correspond to
the definition of long-haul routes. Therefore, 30 routes with
distance less than 2000 km were removed from our data set.
The airlines on these 30 routes did not use A380 on the
regular basis, these were rather exceptional cases, which could
potentially be for airlines’ experimental purposes. We observe
the data on monthly bases for the last 10 years on 121 routes.
In total it constitutes N=35,371 observations. The descriptive
statistics of the data set is presented in table I.

TABLE I
DESCRIPTIVE STATISTICS OF VARIABLES

Statistic Mean St. Dev. Min Max
Distance in km 6,147.7 3,090.9 1,985 13,802
Flight frequency 54.7 51.9 1 548
Log of population 15.3 1.1 12.9 17.5
Number of companies 4.3 2.9 1 17
Ratio of weight A380 0.086 0.242 0.000 0.983
Competitors’ ratio of weight A380 0.084 0.197 0.000 0.975
Log of annual traffic∗ 13.5 0.8 1.1 15.231
Notes: N=35,371, N∗=33,983

As it could be seen from table I, the mean distance of the
route - 6147 km. The average frequency per airline serving

the route is 54 flights per month. On average there are 4
competitors on the route, however, there are routes that are
entirely supplied by a single carrier.

In this specification we are interested to test the two proxy
for demand - logarithm of population and annual route traffic,
which was collected from the ENAC autonomous database.
However, out of 121 long-haul routes, traffic data is available
only for 118. The elimination of three routes decreased the
number of observations to N=33,983.

The figure 3 represents the plot of the mean value of
frequency per period from 2010 to 2015 with blue range
indicating – 95% confidence interval. From this graph we can
deduct that there is a slight upward trend and the mean value of
frequency changes over time. Even though this graph depicts
only mean values, it provides the rough intuition which show
the clear seasonality in the data as well as slightly upward
trend.

.

Fig. 3. Heterogeneity in time series

The figure 4 is a density plot of frequency of flights. We
see that the most common frequency is between 0 and 50. The
diagram is skewed to the right with the highest frequency of
300 per month.

Fig. 4. Density plot of frequency of flights

Therefore, the visual inspection of the data suggests the
presence of heterogeneity in the data. Thus, in order to account
for individual-specific effects, it is a common practice in
econometrics to use Fixed Effect model, where the individual-
specific effects, which cannot be explained by the independent
variables, are subtracted.

IV. TEST AND SELECTION OF THE MODEL

From the visual inspection of the data, it could be seen that
airline data contains time-invariant latent effect that might be
specific to route or airline company.



General model with individual effect has the following
specification [19]:

yit = xitβ + αi + εit (1)

where αi is an individual unobserved heterogeneity and uit is
an idiosyncratic error. Depending on the model specification
αi is interpreted as random or fixed effect [19]. These types
of models provide consistent estimation under the strict ex-
ogeneity condition, which restricts the effect of independent
variables on yit conditional on the unobserved effect αi:

E(yit | xit, αi) = xitβ + αi (2)

In terms of idiosyncratic errors this condition is equivalent to
the following assumption:

E(uit | xit) = 0 (3)

If this assumption does not hold, the common treatment of
panel data cannot by applied. The fixed/random effect model
due to unobserved heterogeneity will be a starting point in
statistical inference. It is one of the most popular approach
for estimation of non-dynamic panel regressions. The

Below is the description of initial model, which has its
limitation and potential endogeneity due to the fact that airline
companies act strategically and the frequency of the competitor
has impact on airline behavior. It will be later modeled with
IV variable or as simultaneous equations.

FREQijt = β0 + β1NUMBCOMPit

+β2LOGPOPit (or β2LOGTRAFit) + β3RATIO380ijt

+β4COMPRATIO380ijt + β5DUMMY 2008ijt

+β6DUMMY 2009ijt + β7DUMMY 2010ijt

+β8FEBijt + β9MARijt + β10APRijt + β11MAYijt

+β12JUNijt + β13JULijt + β14AUGijt + β15SEPijt

+β16OCTijt + β17NOVijt + β18DECijt + αi + εijt
(4)

where
FREQ is the frequency of flights supplied by airline j on the
route i per month t.
NUMBCOMP is the number of companies that operate
on the route i in the period t. This variable is used to
account for the structure of competition on the market. The
other competition measurements, such as HHI, do not exhibit
sufficient variation and thus were excluded.
LOGPOP is the logarithm of population in the departure
airport of the route i per year, proxy for demand for airline
services.
LOGTRAF is the logarithm of two-way annual traffic on the
route, another proxy for demand for airline services. These two
demand proxies will be tested separately to test the robustness
of the model.
RATIO380 is the ratio of maximim total weight (seats and
cargo converted to kg) transported by aircraft A380. It reflects
the intensity of utilization of A380 on the route with respect

to other aircraft types to total weight transported by all type
of aircraft.
COMPRATIO380 is the competitors’ ratio of total weight
(seats and cargo converted to kg) transported by aircraft A380
on the route to total weight transported by all type of aircraft.
It reflects the intensity of utilization of A380 by competitors
on the route with respect to other aircraft types.
DUMMY 2008 is the dummy variable indicating year 2008
period of financial crisis
DUMMY 2009 is the dummy variable indicating year 2009
period of financial crisis
DUMMY 2010 is the dummy variable indicating year 2010
period of financial crisis
FEB - DEC are the dummy variables indicating the month
of the year

A. Testing the validity of model

Test Results
1 Lagrange Multiplier Test - (Breusch-Pagan): t(1) = 5229133.7, p < .001
2 Lagrange Multiplier Test - time effects : t(1) = 1366.60, p < .001
3 Hausman Test for FE or RE models: t(18) = 843.41, p < .001
4 Augmented Dickey-Fuller Test: t(1) = -14.66, p = .010
5 Breusch-Godfrey test for serial correlation: t(1) = 26224.48, p < .001,
6 Breusch-Pagan test for heteroskedasticity: t(124) = 109891.60, p < .001

The table IV-A presents a list of tests that were performed
to evaluate the validity and justify the final specification of the
model.

The first Breusch-Pagan Lagrange-Multiplier for random
effects test helps to decide whether or not there is a panel
effect. The null hypothesis is that there is no variance across
individuals [19]: H0 : σ0 = σ1 = ... = σn = 0. However,
as we can see, the corresponding p-value is lower than
0.001, thus, we reject null hypothesis in favor of alternative,
indicating significant heterogeneity across entities.

The next test is also Lagrange Multiplier test for time
effects. As we can see from p-value, which is lower than 0.001,
there is a strong evidence for using time fixed effects. These
two tests allowed to reject the simple OLS model in favor of
fixed or random effect and establish the significant influence
of time series dimension of panel structure.

The next test is the Hausman test for fixed effect vs random
effect estimation. In this specification we have the following
generalization of the model:

yit = β0 + β1xit + αi + uit (5)

where y is the independent variable, x is the dependent
variable, both varying for individuals across time and some
unobserved factor αi. The random effect model along with
strict exogeneity (3) assumes that there is no covariance
between unobserved effect αi and independent variables:
Cov(αi, xit) = 0. If this condition holds, then both ran-
dom effect and fixed effect estimators are consistent, with
random effect estimator being the most efficient one [19].
If this condition does not hold, then random effect is no
longer consistent. The null hypothesis of the Hausman test
is H0 : Cov(αi, xit) = 0. From the p-value of the test, we



reject null hypothesis and conclude that random effect model
is not appropriate, since unique errors are correlated with the
independent variables.

Fixed effect approach removes the unobserved effect by
preserving time-demeaned data [19], however; the explana-
tory variables that are constant over time are removed from
equation, therefore the variable such as route distance, which
may play significant role on airline policy does not enter the
equation. The general equation of fixed effect is below, where
ȳ is the individual mean value:

yit − ȳi = β1(xit − x̄i) + uit − ūi (6)

Under the earlier mentioned strict exogeneity assumption
3, where each error term is uncorrelated with explanatory
variables across all time periods, the fixed effect regression
provides an unbiased estimation.

The next is Augmented Dickey-Fuller test to verify that
the independent variables are coming from the same data
generating process in all time periods, which means that the
independent variable x in period t follows the same process
as in period t+1 and other periods. There are three conditions
of the stationary process [19]:
• E(xt) = µ
• V ar(xt) = σ2

• Cov(xt, xt+h) = f(h) 6= g(t)

The first is that the expected value of xt is equal to constant
µ. The second conditions is that variance of xt is constant.
The last is that covariance between xt and xt+h is a function,
independent of time. Therefore, if we want to establish the
linear relationship between yt and xt, the stationary of time
series is a necessary condition. Moreover, the presence of sta-
tionary data allows to ensure the application of Law of Large
Numbers and Central Limit Theorem. The idea in Augmented
Dickey-Fuller test is to run the following regression [19]:

∆yt = α+ δyt−1 + εt (7)

where the null hypothesis is that there is a unit-root: H0 :
δ = 0. In the table the value of p-statistics is less than 0.01,
therefore, we reject null hypothesis in favor of alternative
hypothesis for stationarity of time series.

The following test is the Breusch-Godfrey test for serial
correlation or in equivalent terms autocorrelation. The defini-
tion of serial correlation is that the covariance between the
two error terms is not equal to zero[19]: Cov(uit, ust′) 6= 0,
∀ i, s, t, t′. The presence of serial correlation leads the
estimators to be no longer best linear unbiased estimators,
there are other estimators that are more efficient with lower
variance. In the table the p-value for Breusch-Godfrey is
lower than 0.001, therefore, there is a strong evidence against
H0 : Cov(uit, ust′) = 0, in favor of alternative hypothesis,
justifying the presence of serial correlation. Therefore, our
next approach is to construct a model with serial correlation
robust inference.

The last test is Breusch-Pagan test for heteroskedasticity. In
the presence of homoskedastic errors, the following condition

holds: H0 : V ar(uit | xit) = σ2, the variance of the error
terms given the independent variables is constant, whereas
under heteroskedasticity it is a function of the regressors:
V ar(uit | xit) = σ2f(xit). In the test table p-value is less
.001, indicating the presence of heteroskedasticity. Therefore,
the robust errors will be provided accounting for non-constant
variance.

B. Correcting for serial correlation: AR(1) process

The presence of serial correlation indicates that the usual
test statistics is no longer valid[19]. If we consider that errors
follow the AR(1) process:

uit = ρuit−1, for all t (8)

then the variance of error term is:

V ar(uit) =
σ2
e

1− ρ2
(9)

One of the measures to tackle autocorrelation is to change
model by quasi-differencing:

yit − ρyit−1 = (1− ρ)β0 + β1(xit − ρxit−1) + (uit − uit−1)
(10)

The error terms of the above equation are not serially corre-
lated. The estimator ρ is the sample autocorrelation estimate
of residuals, obtained by regression and iteration. The quasi-
differenced coefficients of the above equation are the special
case of Feasible GLS estimator. In this paper, we will use
Prais-Winsten method instead of Cochrane-Orcutt, since the
last uses the notion of lag and loses the first observation.
Moreover, we will apply heteroskedasticity robust errors.

V. RESULTS

In the table II we present the results of the following models:
1) The equation 4 using Fixed Effect estimation with robust

errors on 121 routes with logarithm of population as a
demand proxy, number of observations is 35,371

2) The equation 4 using iterated Prais-Winsten estimation
with heteroskedasticity and autocorrelation robust errors
on 121 routes with logarithm of population as a demand
proxy, number of observations is 35,371

3) The equation 4 using iterated Prais-Winsten estimation
with heteroskedasticity and autocorrelation robust errors
on 118 routes with logarithm of population as a demand
proxy, number of observations is 33,983

4) The equation 4 using iterated Prais-Winsten estimation
with heteroskedasticity and autocorrelation robust errors
on 118 routes with logarithm of annual traffic on the
route as a demand proxy. The number of observations
is 33,983

As it was mentioned above the total number of routes that
are defined as long-haul routes (distance more than 2000 km)
is 121 routes. However, only for 118 routes out of 121 there
was available data on the annual traffic. Annual traffic and
logarithm of population are proxies for airline demand. These
two proxies were tested to verify the robustness of the model.



For comparison we provided the results of
heteroskedasticity-robust Fixed Effect coefficients with
serial correlation in column 1 of table 2 . The three following
columns are calculated with Prais-Winsten iteration on 121
and 118 routes with different proxies of demand to prove the
robustness of our model.

TABLE II
MODEL REGRESSION

Dependent variable: frequency of flights
(1) (2) (3) (4)

Robust FE Prais-Win. Prais-Win. Prais-Win.
estimator estimator estimator estimator
121 routes 121 routes 118 routes 118 routes

Constant – −85.177∗∗∗ −341.605∗∗∗ −191.755∗∗∗
(30.24) (87.85) (52.52)

Number of companies 2.048∗∗∗ 0.279∗∗ 0.269∗∗ 0.268∗∗
(0.578) (0.12) (0.12) (0.12)

Log of population 66.895∗∗∗ 7.758∗∗∗ 3.287 –
(7.878) (2.00) (3.82)

Log of annual traffic – – – 0.287∗∗
(0.14)

Share of A380 tonnes −7.540∗∗∗ −4.926∗∗∗ −4.960∗∗∗ −4.958∗∗∗
(1.637) (0.69) (0.70) (0.70)

Competitors Share A380 −7.053∗∗∗ 1.468∗∗ 1.207∗ 1.214∗
(1.909) (0.475) (0.476) (0.476)

fixed effect 2008 −0.790 0.065 0.068 0.090
(0.548) (0.24) (0.24) (0.24)

fixed effect 2009 −1.621∗∗∗ −0.570∗∗ −0.580∗∗ −0.571∗∗∗
(0.615) (0.26) (0.27) (0.27)

fixed effect 2010 −1.941∗∗∗ −0.293 −0.296 −0.293
(0.579) (0.20) (0.20) (0.20)

Feb −5.097∗∗∗ −5.343∗∗∗ −5.195∗∗∗ −5.200∗∗∗
(0.271) (0.12) (0.11) (0.11)

Mar −0.128 0.438∗∗ −0.456∗∗ −0.466∗∗
(0.143) (0.15) (0.15) (0.15)

Apr −0.577∗∗ −1.234∗∗∗ −1.211∗∗ −1.226∗∗
(0.261) (0.18) (0.18) (0.18)

May 1.099∗∗∗ 0.273 0.237 0.216
(0.345) (0.19) (0.19) (0.19)

Jun −0.128 −1.087∗∗∗ −1.061∗∗∗ −1.088∗∗∗
(0.394) (0.19) (0.19) (0.19)

Jul 2.401∗∗∗ 1.398∗∗∗ 1.333∗∗∗ 1.301∗∗∗
(0.422) (0.19) (0.19) (0.19)

Aug 2.591∗∗∗ 1.406∗∗∗ 1.339∗∗∗ 1.302∗∗∗
(0.420) (0.19) (0.19) (0.18)

Sep 0.043 −1.153∗∗∗ −1.142∗∗∗ −1.185∗∗∗
(0.389) (0.18) (0.18) (0.18)

Oct 1.420∗∗∗ 0.226 0.192 0.144
(0.314) (0.17) (0.18) (0.17)

Nov −0.808∗∗∗ −2.129∗∗∗ −2.139∗∗∗ −2.193∗∗∗
(0.201) (0.14) (0.14) (0.13)

Dec 1.588∗∗∗ 0.121 0.043 −0.016
(0.219) (0.09) (0.11) (0.09)

Observations 35,371 35,371 33,983 33,983
Adjusted R2 0.182 0.161 0.165 0.165
DW statistics ¡0.001 2.264 2.264 2.264

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As we can see from the table there is a significant differ-
ence in the value of the coefficients from Fixed Effect and
Prais-Winsten method. Nonetheless, in most of the cases the
variables that are statistically significant under Fixed Effect are
also significant under Prais-Winster estimation. Important to
notice that the robust errors of Prais-Winsten estimations are
consistently higher relative to the value of coefficient than the
robust errors of Fixed Effect, which corresponds with the idea
of Feasible GLS estimation accounting for serial correlation.
The Fixed Effect robust errors generally underestimate the
truly existing variation of estimators and, thus should be
taken with caution if there is a presence of significant serial
correlation as it was in our case.

In the last row of the table II we can see the value of Durbin-

Watson test. The value of DW statistic is asymptotically equal
to DW = 2(1 − ρ) with ρ being the sample autocorrelation
of residuals. Thus, DW=2 indicates no autocorrelation, signif-
icantly less than 2 - positive autocorrelation, greater than 2 -
negative autocorrelation. As we can see from the results Fixed
Effect model exhibits significantly positive serial correlation
with p-value less than 0.001. The value of DW statistics for
Prais-Winsten estimations is close to 2 indicating that we
corrected serial correlation, and thus, we can reject the initial
Fixed Effect model.

The coefficients of three Prais-Winsten models have same
values, except for the variable logarithm of population, which
loses its significance if the sample is decreased by three
routes. In this model specification, we will not explain the
value of the coefficient, the interpretation of which is not
straight forward, since ρ represents the ratio, but rather will
focus on the value of the sign, indicating direction of the
change in the behavior, in order to identify if there is an
anticipated response after the introduction of innovation. The
signs of coefficients in this model correspond to the theoretical
expected results. The increase in the number of companies
increases the competition, leading to increase in frequency
of flights. If there is an increase in the population, then it
has positive impact on frequency of flights: the higher is the
demand, the more often airlines will schedule flights. However,
in the third column, which provides Prais-Winsten estimation
for 118 routes, in comparison to 121 routes in second column,
lacking more than 1000 observations this demand proxy has
no longer significant impact. Therefore, with the 118 routes
for which we had data on annual traffic, we used it as a proxy
of demand, instead of logarithm of population. As it could be
seen, the increase in the annual traffic leads to an increase
in frequency of flights. The next variable is the ratio of the
usage of A-380 on the route, the innovation, the variable of
interest in our model. It has negative sign, indicating that the
increase in the ratio of use of A380, decreases the airline own
frequency. This is an interesting result, which corresponds
with the hypothesis that the increase in the size of aircraft
leads to decrease in frequency of flights. Thus, indeed, we
see that the companies optimize the passenger demand by
increasing the number of seats and decreasing the frequency,
and possibly lower level of CO2 emission. The next variable
is the ratio of use of A380 by the competitors on the route also
provides interesting insights. From the Fixed Effect model we
might falsely conclude, that if the competitors increase their
ratio of usage of A380, the airline own response is to reduce
frequency as well, whereas in fact the Prais-Winsten estimation
shows the opposite reaction on the competitors’ behavior. The
spacial competition in airline industry - scheduled hours for the
flight departures could provide some insights for the positive
sign of the coefficient of the competitors ratio of A380. The
schedule of flights could be analized in Hotelling framework
with airline location on the 24-hour clock [3]. Consumers are
distributed not in distance terms but are located over time.
The interpretation of the coefficient is that increase in the
competitors’ ratio of total tonnes carried by A380 increases



airline’s own frequency of flight. The availability of additional
hour on the flight schedule represents product differentiation in
airline market: there is a consumer, who values the availability
of flight in a particular hour of day [3]. Thus, firms in order to
capture this marginal consumer may have incentive to locate
closer to competitors’ time in order to capture demand. If the
airline company introduced A380 on a route, it leads to the
decrease of its own frequency as the coefficient on the ratio
of use of A380 suggests. This in turn provides additional free
slot on the time-schedule, which provides an incentives to
competitors on the route to move closer to the airline company
in order to ’steal’ customers.

The other variables are dummies for month and year in-
dicating that, in fact, the financial crisis led to the decrease
in frequency of flights. The sign of coefficients on monthly
dummies indicate that there is seasonal effect on the frequency
depending on summer or winter periods.

VI. CONCLUSION

The study analyzes if use of A-380 on the route leads to the
decrease in flight frequency. The model presented is a starting
point in the analysis of behavior of airline companies and envi-
ronmental benefits that operation of A-380 might potentially
generate. The results suggest that larger size of aircraft A-
380 leads to the reduction in frequency of flights, however,
positively affects the frequency of the competitor. The next
steps in this study are to enhance model by incorporating
the fuel cost for all planes as well as to test instrumental
variable and simultaneous equations approaches to tackle
endogeneity caused by interdependence of strategic decisions
of airline companies, which will allow to further understand
to what extend A-380 can contribute to the evolution of more
sustainable air transportation system.
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